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mental in its initiation, We acknowledge Ann Howes' contributions to the editorial aspects of
this report.
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ABSTRACT

"A procedure is given for computing the bivariate normal probability over an angular region or
a convex polygon. The procedure is implemented into a Fortran IV computer program which is
designed to yield 3, 6, or 9 decimal digits of accuracy. Comparisons with two other published
methods, for the same achievable accuracy, show our program to be much faster.
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1. INTRODUCTION

In this report we give a numerical procedure for integrating the bivariate normal density func-
tion over a convex polygon. The Fortran IV computer program* developed from it is fast and is
designed to yield the output probability to 3, 6, or 9 decimal digit accuracy. As far as we know, it is
the fastest and most versatile program of its kind - most versatile in the sense that it handles, with
three prespecified levels of accuracy in the output, arbitrary convex polygons* rather than just tri-
angles and quadrilaterals. We make note at this time that the program serves as a basic subroutine for
the automatic computation of the bivariate normal over an arbitrary polygon. A complete program
for this much more general case has been written, checked out, and is operational. Its description is

deferred to a later report.

Our procedure for the convex polygon case depends on a fast method, with prespecified accu-
racy, to evaluate the bivariate normal distribution over an angular region, A. In particular, we wish
to evaluate

(1) 1(A) (Zo2,r I JexP j-L -- J) - 2p

+ I z 0 2'/2(1 -,P)I dwdz.

where, (0 A, ) is the niean and r 9l oa the covariance matrix of the normal random

variable (wz) with correlation coefficient p. The angular region A is defined as the semi-infinite
part of the plano bounded by two interacting directed straight line&. Of coune by this definition
there are four such rcgions, and therefore it is necessary to always state which of theo is involved.

The well-known linear tranisforsatios

L _P

reduce tihe initegralld of (1) to one with circular symmietry, namliely

(3) I'(A) - P(A) -- .- Sexpl-(xa + y2 )!21 dyl dy,
-A

Tt'he phvfii is coded (o6, tile Q4 .700, labre.pcle binary computet •;apablt of one inillion operatison pet
ýt4o1d. It lus a 60 bit binary wold leapth of which 48 are usci to expteu the niantissa of a twntber

00r114 lastiloU lwlos polygwl will always ncin 4a dod coivex polygon.



where A, like A, is an angular region, since (2) takes straight lines into straight lines. Thus we deal
only with (3) hereafter unless noted otherwise.

An extensive literature exists on methods for integrating the bivariate normal variate over
various simple geometries, where the ultimate objective is to appropriately utilize these integrations
to evaluate the distribution over a polygon, (2,3,4,5,6,7]. One such case is where A in (1) forms a
right angle at (h,k) with the sides of the angle directed parallel to the w and z directions. When the
mean is zero and the variances are equal to one, ( 1) for the angular region just described is denoted
by 4)(h,k,p) and is called the bivariate normal integral [3] or the bivariate normal probability func-
tion [9, p. 936]. We shall make reference to 4) in Section 6. We show it is equivilent to (3) where
the given right angle is transformed to an angular region A and then show that a recent method for
computing 4), 131, is slower than our procedure for obtaining the same result from (3).

The idea of integrating over an angular region seems to have originated with Gideon and Gur-
land (hereafter G & G), (41 * [51, As observed by them, the idea of integrating over an angular
region, as expressed by (3), is a natural and easily visualized way to obtain the probability over a
polygon. In Section 5 we shall discuss and compare their computing method with ours.

In Section 3 we show how, by utilizing (3) over a set of angular regions, we obtain the proba-
A bility over a convex polygon. Our approach differs here also from what G & G advocate. In Section

7, we give sonic numerical results. The computer program is described in Section 4 with its Fortran
listing given in Appendix D. In the next section we give some analysis and also the algorithm for
evaluating (3). Its implementation into a computer program is not straightforward since certainI precautions are necessary as will be explained in Section 4.

I 2. ALGORITHM FOR PIA(R, . )I 0

III this se!ctioll we derive the algorithm by which we evaluate (3); i.e., we obtain that part of the
circular normal distribution over the angular itglton A(R. 01 O) as the shaded region 4hown in
Figure 1. Lines (iJ and ©G) form the boundaries of this region. R desnotes the distance from the
origin to the vortex of A(R, 01, 0a).

It is convenienit bcause of Circular symmctry in the integrand of (3), to Iwrforin a rotation of axes
such that the line L and tie x axis coincide. with A rigidly rotated as shown in Figure 2. Hireafler
we shall always assume such a rotation. through the angle l, ha• been carried out.

IlThe coordinate trantsfornnation

1 (4) x R + rcosO, y rsiO, S41 I

is used in (3) to obtain

*%tWe are glatefit to Pete Shatt -at White Sands Mksiki Range, Now MeCko foc brfiP4 their Wicawia tepoit 141,
to ow attention.
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(5) P(A) exp (R2 + 2rR cos 0 + r2)] r drdO
at 0

=2 e- 12ffre-' e-P: drd0,

where

(6) p = R cos 0.

An integration by parts on the integral in r yields

(7) f re•" /ePdr I f cf - -pedr

"2 l 1 - pcp2ilJed46(I*P)Zdr
0

I pe.p terfc(pA/ ) drzlp/.).

whore

Using(7) in (0)1 c4avryitg out tho obvtum part of the 0 intagrmit•. (5) becomes

We notc tor It• 0. (9) gives the eO xt t mult dirictly,

(1! PJA(O 40)) 4012tv. 0 0 - 0t.

-*qqution (9) gives the telation for P(A) upon which our progrm is based. A Similt relation
was otigiolzly detived by Amos, I 11, in an entirely diflere-nt way.

The difficulty in evaluating the integral.in (9) is resolved by obtaining, for a giv•n 6 > 0, the
minimax polynomial fit to "t(c (uizOO) fwo 0 < u < CO6). Namely, a set of conswants a ,nd a
"ltwt• pKxit6ve integer K am found wh that

4
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(12) erfc(u) - z(u) Z akuk <1- 6, 0 u<C(6).

The constant C is chosen, once 6 is specified, such that

Se [4((13) + Y2) dxdy erfci /'2 e S -W'/,
A

with

(14) C=/V A A
42 2

:aFor 6 ! 5(-4) 51-7), 5t- I0) 2(- 13) the ak and C are given in Appendix A. For example
fort 6 - 5--7), (=S X 10) we give C 3.5505, K = 9. The way in which c was chosan in (13)
is explained below.

The integration in (9) can mow be carried out numerically by recurrence relations. Indeed,
fron (12) and (9) we have

'01:-',i(IS) POO N" ak "! c ost0dO 101<z
(16) A, - CO do

!where 1 ~ ~ jc s d j

V -so that

(18) 30 J3 #1 t=7 411 2 -- shinO1

("! 9 ) " - 0 1. . .

where it is eilshpsized that fI1S) and (19) hold only when 101 I 1 12. i = , 2. This fol(01 front
(100, because u > 0 in 012)au•d R > 0 is( (10) imply cos 0 > 0. For caw& outside thistr•t. we
mnake use of thre fact that



1rf R < 7

(20) P[A(R, 0, 6)] sin 0) P[A(R, 0, r 6)],

where we prefer to work with the coerror function, erfc (see (8)), instead of the univariate cumula-
tive distribution function of a normal variable. They are related by

(21) 2erfc(x/*,/rJ) = 1 - 2-- z(t/vr7)dt.I iThe implementation of (19) and (20) is discussed in Section 4, which deals with the computer
program.

We now show that if a maximum error of - is made in approximating

(22) f(u) = erfc (u), 0 < u < C ),

as noted in (12), then the truncation error in computing P(A), using (19), can be no larger than 8/1F'.
Indeed, from (12)

(23) IF(u) -- akuk u 6 eu , u 0, F(u) Z-
0

and since u > 0, we have

(24 R 2/2 2' 2 <eR 2/2C 2 K _~ d<le R2/d(24) - -eR f ueu d, < [uF(u)- Z aku I dO dOe

But, with (10),

(25) 2ueu dO -- 01 dO

S[erf~$ )iO2  -efsn I < Viv,

and (24) then implies

(26) j- Jof [uF(u) - 2 akuk 1 I dO J VrV G (ne).

This accounts for the way e was chosen in (13).

"The dominant part of the computation in evaluating P(A) from (19) is the generation of the
"sum of terms I ak J + 1 Two 3ituations can occur for which this sum does not contribute to the
value of P(A) to within the accuracy specified, namely when R is "small" and when R is "large."
In the first case, wt have

' " 6

'4 .. -



(27) P(A) I (1 - R2/2) -40- I f dO + . ( ,

where with uF(u) g(u),

g(u) -!-cos0(1 R2 cos2 0) N-' - R f- 0 + O(R)
R2~ -" \]2

coso0 + O(R3=IL Cos 0 12 N/

Carrying out the 0 integration in (27), we obtain

[AO 1 41R + 3),R R)

(28) P(A) - L .' sin02 - sinO1 + -' sin 2 02 -- sin20, + O(R3)"If 2'T \ V 2  , 4vy 1

Thus, when

I~ jý sjr 6, (6i, __'• _•(29) 2V-\2 - vr2si'0 ./i r• WIT(e-= C,sc(3)

then

(30) P(A) AO/2w.

Extending the above analysis one can show that the R3 tenr in (28) is given by

I R�K72) sinl 0 cos 0

and upon integration yields

(31) E( - (sil, 0 2- siO,).

Hence P(A) is approximated to within e by (28). without the O(R 3 ) torn, when

(321 S~(32) IL <1 -1._!_

In the other circumstance, when R is sufficiently large, a parainewrl call be determined,
depending oi e, such that if

(33) R R (or R1t2 >, k/2)

a7
WP MI



then P[A(R, 01 , 0 2] < e for 1011,1021 7r/2. So in this case that part of the computation for
P(A) which uses (19) can be omitted, but one erfc function is still required for each I 0il > w/2
(i = 1, 2) (see (20)).

We note from (13) and the fact that P[A(R, -ir/2, 0)J is an increasing function of 0, that for
R R

(34) PJrR 0)) 0erfc(CR/V'2), 10 11 102 < r/2, 0t < 02
2 (4Pt(,0,0)1 <- P [A-. 2-,2 2 2 1

Consequently, we choose R such that

(35) -'erfc (R/-2) = e= i,

and observe that C from (14) and R/I2" are the same for a 3iven e. Geometrically it means that the
region to the right of the vertical line x - RV"does not contribute to P(A) to within the specified
ac..uracy.

3. USE OF P(A) TO COMPUTE P(H)

In this section we show how, using probabilities over angular regions, the probability, P(H),

over a convex polygon H is obtained. In 141 they propose using probabilities over triangles and
quadrilaterals to obtain the 3ame. Our procedure, however, is, in gtneral more Xfficient. As shown
below, we require only N angular regions for an N-isided cowtex polygon, whereas they need at
least 3(N - 2) regio•is if H is decomposed into triangles. If, for N even, H is decomnposed into quadri-
laterals, or quadrilaterals plus one triangle for N odd, then one needs 2N - 4 or 2N - 3 angular regions.
respecidvely. We remind the reader that our ultimate pufpose in developing a program for computing
P(H) is tc use it as a subroutine to evaluate the probability over an arbitrary polygon. As stated

earlier this has been done and will be discussed together with a computing program in a later report,

SLet It(N, t, .... , tN) denote a convex polygon of N sides with vertices at coordinate points
*!t .. tn, where tk ( (xk, y ) and the points I tj are given in coutiterclockwiso o'd&r; iLe., so

that the area of Ii is on the left as one traverses the boundary continuously.* Then

N-1
(36) P(H, P(A1) - Y. PtAl) + PKAU),

where u.ing Figure 3 with N 6, At is the angular region determined by any interior angle of
H with its vertex assigned as t1 , Ap, i =2... , N - I, are angular regions determined by the exterior
angles of IH at vertices t2, . .. , tN .I, respectively, as shown in Figure 3 and AN is the angular regionobtained from the vertical angle of tile interior angle of H at tN. It is easy to argue the validity of

(36) by noting, e.g. in Figure 3 (N = 6), that the probabilities over the disjoint shaded regions Et,
i = 2, 3, . N - 1, exce.svely diminish the result for P(1) by an amount exactly compensated
for by tlhe addition of P(AN). A formal proof of (36) is not given in this report.

*Note t-at (2) naps convex polygons into convex polygons.

8



.. .... ..... .. .. .. .. ... .. .. .. .

................

F~gure 3 onvex Plygo.,.N6..Showig.An.ula.R.gion

......g... ...d up to .N.....r.i.s....

(3 7 ) ...................

Thus~~~~~~~~~~~~~.. o.r ...a eirlvwllrqieol - alst h a'ruieinta l yxsn
(37. Te iccnrnaton f te igh-had ideis entedin heflo.ch....s....g,... bxe
12,S ~ ~ ~ ~ ~ ...... ..4...i..o cat Ipge

4. UMUTE ?OGAM)RPI)(NPA)......
In hi sct~n e isussth 1J~An VpormCtteeauto~o Q)o ()

i~rml roailtyditibtin vt cnvx eygn 1 f idsora a~dr ego A rspc

A, A

_______ .2



Lu

0 a a t t
u

00eq
to
t

to

+ +

W III

00

ull

tA

tr

ri
Zh

A Z 00

L-2LJ
:I' KA t

AL- 
- -

10



'00

tt

1:2

00

f~l



specified with N set to one if P(A) is desired. In this case 3 points are required, as in the case of a
triangle where N = 3, in counterclockwise order, i.e., so that the region A is to the left as one
tranverses the boundary lines with the only vertex at ti. A parameter is set specifying whether 3, 6,
or 9 decimal digits are desired in the output P(H) or P(A).* The associated values of various param-
eters are given in Appendix A, namely ai , aU, a 2 , a3, R3/V " Also listed in that Appendix are values
of these parameters for P(H) or P(A) computable to twelve decimal digits. These however are not
incorporated into the program but could be with no difficulty if desired.

It is imperative for the program to operate properly that the tk be given in counterclockwise
order; i.e., with the area on the left as one travels along the boundary of H or A. Two typical
examples are shown in Figure 4, where P is wanted over the shaded or hatched regions.

y t4

t tip

N 6 N= I
Figure 4. Typical Regions for H and A

Point t, for 1i can be taken initially as any vertex point, however when this program is used for
arbitrary polygons, it will cycle the points and renmnber them so that the new t1 is the point with
the property

(38) tj y ykwithxj<xkifyJ y

(This feature is not shown on the flow charts.).

For A, t, must be specified as the vertex point, as shown in Figure 4 above.

In order to evaluate PIH), N angular regions lAJ are treated, one at each vertex of H, and

their probabilities I(A k I combined appropriately as explained in Section 3 (see (36)). For a

particular Ak = A(R, 01 02), the inequality blow

*We make note of the fact here that lite specified number of correct decimal digits bi computing P(|1) may not be
achieved in the unlikely case that the errors associated with a majority of the angular tegions have the same
sign and thus add to a total error of as tuch as NM.

12



(39) B = R2 /2 7 a1 = ire2

is tested where a1 is taken from (29). If it holds then [1, 51 is used to evaluate P(A), which is
then stored in I,

P(A) =(02 - 0)/2r= ltan (luz - vwl27r uw +vz

"where the tan- is obtained from a four quadrant subroutine which gives its output in (-ir,r]. The
quantities u, v, w, z are initially defined in [I, 1] and subsequently in [II. 20, 25, 371 depending on
which angular region is involved. The angles 02 and 01 are measured in radians and are as shown in
Figures I or 2, page 3, with A0 always positive from 01 counterclockwise to 02.

If the inequality in (39) is not true, then a rotation of axes is carried out, [I, 91, as indicated
in Figures 1 and 2. Quantities g, /D1, h, /D, g2/D2, h2/D2 are computed, [I, 10], where

(40)g1/D cos01- g1' ht/D1  sin0 1 -h

(40)

g2/D2 =tcos0 2 .. i gV,, h2 /1)2 2=11sin20 1,

with

(41) D1 = '2(w2 + z2 )J• , D2 = [2(u2 + v2 )i%

We have for the first of (40)

(42) Inos kx_ ~ ~
'( 2 xkw + Yz + (xkz - ykw)2 )%

(xkw + ykz)/(2(w 2 + z2)j] g%/D1 .

The other relations in (40) are found in the same way. The location denoted in the charts as P
contains the output P(A) if N = I, or P(H) if N > 3. Location 0 contains 0 if N 1. If N > 3
mad (33) does not hold, then 0 contaIns 0(N), (Sce (37)), at exit.

In (1, 281 . the inequality

(43) B < a2 G (9•2)1I32 (1 112/2),

is tested. If it holds then P(Aj,) is given by (28), (1, 5, 321, where a2 is taken from (32).

t. In general, the programn distinguishes 12 different types of angular regions which are ex-
haustive and are characterinzd by the signs of the numbers 9g g,1 h, 112 as computed in (11 101.
E3~xamples of each of the 12 regions are shown below in Figure 5?with the ternis used to evaluate P,

13



rQD1

I
P = P(A) = P(,)

I29 < 0

< 0

--- 

<0

P = erfc(hl2) -I PA) 92 < 0

. .. P =A r e~ 2 ½Cr fe-h!) + P(A )

-& A(R,0 3,0 4)

Figure S. Various Cuse for A

Note hIg h2, 9g here rfer to 1I, 101.
14



(P = P(A)). It is assumed the rotation, 1I, 91 has been carried out as described above, so that the
vertex of A is on the positive x-axis (not at the origin). The angle between the directed lines labelled

T and (11 is always measured from (0 to ( in the counterclockwise direction and it is non-negative
and always no larger than 7r (sin (02 - ) 0 0), since we are dealing with convex polygons. We allow
r < ,AO < 27r only if N = 1. In this case we evaluate P(E-A) P, where E denotes the entire plane,
and find P(A) = I - P. The boxes that apply for N = 1 only, showing the details just mentioned, are
[1, 36, 37, 38]. In the situationb shown in Figure 5, we denote the probability over the angular
region between (U and (U) by P, and note in the expressions for P below each diagram, that if gi < 0
(i = 1, 2) then erfc (h ) is required where I hi I is the normal distance from line (Dito the origin
(See (20)). The lines (and ) shown in the diagrams bound the angular region denoted by A. In

diagrams ¶ ., M], D, A and A coincide.

If I h I (IhiIor l h21) is sufficiently small, erfc (h) can be replaced by one and a call to the erfc
routine avoided. This feature appears in the program through 11,1 2,13,16,20,341 where the in-
equality

(44) ihI Q.3

is tested, We have if (44) holds

(45) 1I rfn ) - It , I oý. /2, (U defined in (13))
2 2V /

so that *3 is taken as

(46) Q3 6/2.

Box [11,71 is used to check if R is sufficiently large for tiW computation of (09) to be by-
pIaW. The choice for R/,/., which has already been discussed on page 8, is made so that with

The progratu for P(A) by (19) is displaye-d in 1111.2-.231 and 111,271, with 111,41 show•ng the
computation for J. which denotes ± the angte of A where the sign agrees with the sign prec.ding
P(A) in the relations given for P In the diagrais of Figure 5 (Sec (18), also).

The program is designed to rmcogonize and avoid a subtk situation that cn occur due to round-
off error that leads to a catastrophic erroneous result. As an example suppose we are dealing with a
polygon where one of the exterior angular regions, say Ak, k * 1. N, as shown by the solid lines
in Figure 6, subtends an angle 0 of nearly ir radians with sides of A at large perp•ndicular distances
from the origin, so that P(A) - i.

~15
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A A

Figure 6. Shows A Singular Case Situation

Suppose, however, by rounding error line Q. is actually given by the computer as line ® so
that the angular region A subtends an angle 0. near (-v) radians. Thus the program in this case
would ield a value [ -P(X)] ; i.e., a small value. Moreover it would be negative since &'is measured
from b3 to @ which is clockwise rather than counterclockwise. This singular case situation
and others that can occur are handled in the program through boxes 11,221, (1,231, 11,241, and
11,291. When N o 3, a singular case occurs for the kth angular region of H (AO' 4 10, it]) when

(47) S =-R-sin (0 01 0.

If this is the case, a second inequality is testod, namely,

(48) C E#cos(02  - 01) < 0.
If (47) and (48) are hosfied, as in Figure 6, we set P(Ae) = erfC (t), where t -i 1 if gl <0, or

I~~f g, >0. If (47) hold. and (48) does not, then we set P(Ad ) ~0si% "*0 I 'O.
singular situation tlhu cannot be resolved occurs in tile unlikely case that (47) holds, (48) does not,
R )-, R, and gI, g, arf ntgative. When all of theu, conditions Dre true, Ak may contain tile origin so
that for sufficiently large R (> 104 ), P(Ak) is not close to zero. However A0(- 10 4) should
always be in 10, w) for a convex polygon, but it is not since (47) holds, Hence we caoleot fint. with-
in the single precision capabilitie of the CDC6700, the value of P(Ak), because the value of A10
cannot be res.olved.

In the next section, we discuss the Gideon-Gurand method (G & G) for evaluating P(A). In
their report and published paper however they do not consider the programming aspects of their
method, which must also deal with the singular case. problem just mentioned.

Extensive checking of our program was carried out. Comparisons of results were made with a
program of~the G & G method that we developed. Also comparisons were made with two other
independent programs for computing P(H) for the special c-ate of triangles. These programs also
allowed independent checking rar convex polygons other than triangles, since a convex polygon can
always be decompoed into a set of triangles.
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Our computing program is designated as VALR 16. In Appendix C a Fortran IV listing is given
of a test program which generates coordinates representing the vertices of a set of triangles such that
all phases of the VALR 16 program are tested by evaluating the probability over these. triangles.
Some numerical results are also given there.

5. COMPARISON WITH GIDEON AND GURLAND METHOD

The work of Gideon and Gurland (G & G) [41, [51 gives a set of relations by which P(A) can
be evaluated. Their unique procedure is very efficient and though limited to 5 decimal digit accuracy
appears to be one of the best of the methods we reviewed in the literature [ 1, 2, 3, 6, 7]. Essentially
they assume the angular region A has been rotated as shown in Figure 2 such that if 101 I T/4,
(i- =!, 2) then

(49) PIA(R, 0,01)1 =- erfc(R/v2) [b0 +bR+b2R2 )0i+(b R+b 4 R2 )o3 + (b5 R + b6 R2)0

The coefficients bj were determined by least squares for each of 15 subintervals in R, [0, 1/2),
11/2, .751], ... j/4, (j + 1)/41,... ,[3.75, 41. In order to evaluate P(A), they need to use (49)

twice. with the same value of R, once for0 1 and once for 0. Because the use of (49) is constrained
to 10 I < rt/4, G & G require in addition to (20) the relation

S(50) P[A(R. 0,0)1 = erfce sill0)erfc Rcos0) - PIA(R0, Oc-0)1 •< 0 < 1/2.

We have programined the (G & G) method and found the average computing time per angular
region to be about 20% longer than ours at the 6 decimal digits accuracy level. We estimate a 25%
to 30% difference if we modified our method for 5 instead of 6 decimal digit accuracy.

Although it takes less tinme to evaluate the righthand side of(49) twice, without erfe (R•,•'),
than it does to evaluate the recursive procedure given by (19), our miethod has significantly less
calls to tile various special function routines, exiept for the exponential, In particular since the
ininintax approximation for erfc (u)/z(u) holds for u > 0. (101 < 12), we do not need (50).
Moreover. in evaluating the number of erfe functions required by G & G it is recalled that we need
an erkc function when wf 2 < 0 < 31r/4 or when 3w/4 < 0 < r. In the second case they also need
one erfc. however for the first inequality they need two. Consequently, for each A, counting the
erfc function nieeded ill (49) once and using (20) and (50) it is easy to show by enumeration of
cases (for example, il L:U of Figure 5, page 14, they could neeu 5 while we would need none)
that their method takes on the average 3½ times as many erfe functions as ours. In addition, they
treat 01 and 02 separately while we treat the difference 02 - 01 (except for the functions g,,

Sh,, g2 , hi• which are expreed as algebraic functions of the coordinates of A). Thus, they need
two separate calls to the arctangent routine for IPA) whereas we require one, and for 1i a triangle
they need 5 arctangents; (taking advantage of (37)) while we need only 2. They also need R which
requires a square root while we need an exponential. The average ounwnbe of calls to special func-
tions for a convex polygon of N sides is summarized in Table I.

"note a weious oission In [5) where it is not ex ii tly sated that (49) oily hod for 10 kI w4.
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Table 1. Average No. of Calls to Special Function Routines
for N-Angular Regions

Us G&G

erfc N 3.5N
tan- 1  N-I 2N-I
square root N+l 2N+ I
exponential N 0

We also note that in [4] they advocate treating N sided polygons by decomposing them into
sets of quadrilaterals and triangles. In the case of N-convex polygons, this would mean treating 2N-3
angular regions for N odd, and 2N-4 for N even, whereas we would only require N angular regions as
explained in Section 3. Also in the case of an arbitrary polygon it will be more efficient in general
to decompose it into as few convex polygons as possible rather than, as G & G propose, into tri-
angles and quadritalerals.

6. COMMENTS ON DREZNER'S METHOD

In a recent paper by Drevier. [3), a method is given for comnputing the bivariate normal inte-
gral. 4+(m, k, p); Lt.,

(Si) 4%k~p) ( V7 i 'fj2(1 f ") I dwdz.

By letting

u (II-W)/ P2) . v (k - ýi P
(52):• M mh./•(|:-'•pa K =kk./2(l - p;•)

lie obtains

(53) 4P0111.k0 ) =P f'- JC-UZ r'(uv)ludv,

whole

(54) 1tuv) = cYpINI(2u - M) + KQ2v - K) + 2p(u - Mv - K)I.

Diuzer then uscs G.)ussi,- hitegration. when ni < 0. k < 0. p < 0. so that

(55) 44(•wk - .-) "I-.Ž - AArf(u. v,),
Ir jv i'l
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where the weights A, and abscissae ui (or v1) are given in [81. He makes the significant observation
that if

(56) m t 0, k < O, p K O,

then f(u,v) 4 1 and he can use (55) directly to evaluate F within a given error for reiatively sinalI
values of J. For example, the maximum observed error for J = 5, is reported to be 5,5(-7). He also
takes advantage of the fact that if the argument of the exponent in (54) is sufficiently less than
zero, f can be replaced by zero. For J = 5, his cutoff value is stated as - 12.

In cases where one or more of the three inequalities in (56) does not hold, one or two erfc
functions must also be computed. In case mkp>0, then two sums such as appear in (55) are needed
in addition to possibly one or two erfe functions. The necessary relations are all given in (3]. Two

typographical errors are noted there. In (10) 1 i/'t should replace 1/21 and in (12)

(57) 6k 1- Sgn(i) Sgn(k)
(57 

4

where the minus sign replaces an incorrect plus sign.

rlearly (1) with Pu = 0, o0 I, i - 1, 2. reduces to (51)where the angular region A hasa
right anglo at (iek). Applying the transformation in (2) which reduces to

(58) X (w - pz)W/ -- P . y z

thi 90' angular region A in t1w w - z plane is transform-.d into mn angulur wgion A i tlie x y
plane with vertex at (xo, YO), where

x•(In - pk)/Nrf -ý p.yo •"k,

with a subtended anglo 00.

00° tali' Vi,/ ,I-
where 0O is mea.ured ~ounterclockwi- ¢from the negatlv• side of tho line y k. 11c angular region

A therefore is always below the line y k.

In particular, given a W-t of valuet. (ink,p) there exists a uorreponding angulur region io the
x - y plane specified by R. 01, 0 (Se Figures I and 2). The cotnection betwavn thesse sets of
variables can be shown to be

19

I



R = [(m 2 - 2pn-, V k2 )/(l -p2)]h

01= tan-' [k,/ - p2/(pk - n)], 0- 'an-"'-r.:xi - p2 /(pm - k)]
(59)

g, (pk - m)/N/(-I- g2  (pm - k)Ix2( - )

h k/N/2, h2  m/V/-

or

R sin0 - h2, k =V - sin 1 = V-h (see (40)),
2

= -2 (gg2 + hh 2 ) -cos(0 2 - 0),

(60)
1 - P2 - sii1(0 2 - 0 J ;?

We have programmed the Dreimer procedure and compared it to our rntthod. A Fortran IV
listing is given in Appendix B. We did not expect it to be as efficient because of the large number of
exponentials required. For J - 5. 25 exponentials are required when mkp < 0, and 50 are needed
when mkp > 0. However neither method suffers in comparison to the other in computing addi-
tional erfc functions (or .x iivalently normal probability integrals in one dimension) since it can be
shown both require the same number (none, one, or two) in any particular case.

Timing'runs t.r the two programs showed that the Drezner method is 4 times slower on the
average than ours for 6 decinal digit accuracy and 8 times as slow 7.•,r 9 decimal digits of accuracy.

We also note that Drezner's procedure is incomplete for programming be(,aase he does not
state how to treat t!'r cases p = 1, p = -1. These values can occur through numerical rounding and
must 1e dealt with before a working program can Ir,. obtained. This problem is resolved by noting
that if p= I - e, e> O, then

(61) lim 4(m,k, I - e) = '2erfc(-T/Vk2),
Se -',0

where T minimum of m and k;

ifp =- +e,e > 0, then

j/z[erfc(-k/IV/) - erfc(m/v'2)I, if k > -m
(62) lirn 4(m,k, -1 + e)=

e - 0 0 otherwise.

These formulas are easily seen to be true by noting that the line w m transforms by (58) to
the line, call it L,
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(63) XVI -p 2 + yp M.

The line L clearly has~ the propexty that, whether mn is positive or negative, it is tangent to the circle

(D)

(64) X2+ y2 =.. 2 .

The following additional facts 3r- ' asily proved from (63) and will help the reader in following
Figures 7 and 8 and similar situations: ( 1) The, slope of line L, or dy/dx, is + Iý -

2/-p), and
hence the slope has the opposite sign to that o p o that p must be negative in Figure 7 and tpositive
in Fili~itrl 8; (2) The x-intercept of L is mn/,/i - p2 , so that m is positive in Figure 7 and negative
in Figure 8, rn having the same sign~ as the x-intercept of L.

Hence if p I - + e, e > 0 and smadl, k > -mn, we have the situa~tion shown in Figure 7, Now
as e -~0, the point (C) approaches + along y = k, and L approaches tangency

ýT.to the circle (D) at (0.--m) (but note that 0 < k m i in this case since the x-intercept of line L is
postie).Cosequently, in the limit as e -0, ~(~.1) is given by (62), Simia ersi ru

nients. which can Ibe made rigorous, can be given for any other situation with p I as well as
p - 1. For examnple, with p I c, e > 0, it) < k-as in Figure 8.

Y k
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In this figure, p = I - e, m < k < 0 (x-intercept negative), and we observe that as e -* 0, the
shaded area in Figure 8 appro;.ches the region below and including the line y = m(< k < 0) as
required by (61), or the limit is (1/2) erfc(-m/./-,

7. SOME NUMERICAL RESULTS

in this section we give the numerical results for P(H,) and P(H 2 ), using our program VALR-16,
where H, is a 6 sided convex polygon containing the origin and H2 is an 8 sided convex polygon
nolt containing the origin. The x, y columns of Table 2 below contain the x, y coordinates of the
vertices: the three columns that follow list the values of P(Ak ) for each angular region (See
Figure 3) for e, 1  2.5(-4), e2 ý 2.6(-7), e3 a 2.9(-10), The last row headed P(H) contains the
value of P(H) fore e2, C3 " All the P values have been truncated from 14 digit CDC 6700 output.

Table 2

k P(Ak)' "I P(Ak),1e 2  P(Ak), e3

1 0,5 -2.0 .911227 .911064879 .91106477067
2 2.0 0.0 .046858 .046998988 .04699911886
3 0.5 2.0 .052500 .052666886 .05266699792
4 -0.5 1.5 .059487 .059482771 .05948276788
5 - 1.5 0.0 .042640 .042515227 .04251511748
6 -1..0 - 1.5 .017780 .017747368 .01774728061

P(O1) =P(H1) ,727521 .727148375 .72714804914
~ - m

1.5 -1,5 .851151 .850975856 .85097578896
2 2.0 •-0.75 .018552 .018726585 .01872664573
3 1,75 1.75 .038192 .038305815 .03830565474
4 1.25 1"25 .064039 .064042498 .06404250011
5 0,50 1.50 .486789 .486841686 .48684172637
6 0.25 0.25 .042253 .042256194 .04225618944
7 0.25 -0.ý25 .026270 M026273494 .02627348809
8 0.50 41,25 A116365 .116775266 .11677520430

P1100 - PNH! -+ .1291919 .291304849 .29130478878

(See (36))
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APPENDIX A
PROGRAM PARAMETERS. CHEBYSHEV COEFFICIENTS FOR

erfc(x)/z(x), x > 0

In this appendix we list the pertinent constants that appear in the program for three levels of
accuracy (3,6,9 decimal digits), and an additional set which is designed to yield 12 correct decimal
digits for the probability over an angular region.

Acc. S C( N)=-/" e oil a2  a3 2 E(

® 4.50(-4) 2.46 2.54(-4) 2.02(-7) 1.22(-2) 2.25(-4) 2.52(-4)

® 4.56(-7) 3.5505 2.57(-7) 2.08(-13) 1.23(-4) 2.28(-7) 2.57(-7)

© 5.21(-10) 4.382 2.94(-10) 2.72(-19) 1.35(-6) 2.61(-10) 2.88(-10)

. 1.78(-13) 5,.1092 .1,00(-13) 3.17(-26) 6.58(-9) 8.90(-14) 2.50(-13)

e• = Wh•" See page 6. Of= (9jrC2 )1/3 See pages 7, 13.

C(W) See page 5. a 6/2 See page 15.

See page 8.E( 2) -erfc(RW2) See page 8.

f= V 2  Sew pages 7, 13. c 2.5c (for@ )

The first column of the table labeled Ace. (for accuracy) lists ® , , , © referring.to
3, 6, 9, 12 decimal digits of accuracy, respectively, for the probability over an angular region. Pages
are given above where the parameters arm defined in the report.

I
The ,nininax cocificents. ak - for approximating erfc(x) on C(6) (See (12), (15)) are given be-

low for four accuracy levels as indicated in the tables below by , , ,© They were
computed by a double precision minimax subroutine utilizing values of erfc(x) accurate to 18 Sig-
nificant digits on (06, C) and erf (x) accurate to 25 digits on (OY1.

For A (Average time per angular region = 2.2 x 10-4 sc)
x..

ao .885777518572895D + 00 -. 981151952778050D + 00
a2 = .759305502082485D + 00 a3 " -. 353644980686977D + 00
a4 - .695232092435207D - 01
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For D (Average time per angular region 4.6 x 10-4 see)

a, = .886226470016632D + 00 al = -. 999950714561036D + 00
a2 = .885348820003892D + 00 a3 = -. 660611239043357D + 00
a4 = .421821197160099D + 00 a5 = -. 222898055667208D + 00
a6 = .905057384150449D - 01 a7 = -. 254906111884287D - 01
a8 = .430895168984138D - 02 a9 = -. 323377239693247D- 03

For © (Average time per angular region = 6.5 x 10-4 see)

ao - .886226924931465D + 00 a, - -. 999999899776252D + 00
a2 = .886223733186722D + 00 a3 -. 666626670510907D + 00
a4 = .442851899328568D + 00 as -. 265638206366025D + 00
a6 = .145060043403012D + 00 a7 = -,714909837799889D - 01
a8 = .309199295521210D - 01 a9 = -. 112323532148441D - 01
ajo= .324944543171185D - 02 a, , = -. 704260243309096D - 03
a, 2 = .105787574480633D - 03 a, 3 = -. 971864864160461D - 05
at,4= .408335517232165D -06

For ® (Average time per angular region 9.1 x 10-4 see)

a0 - .886226925452593D + 00 a, - -. 999999999948597D + 00
a2 = .8862269227867461) + 00 a3 = -. 666666611866661 D + 00
a4 = .4431128680489191) + 00 as - -. 266662729091411D + 00
U6 = .147687136321938D + 00 a - -. 761365855850292D - 01
a8 - .368032849350860D - 01 a - -. 1671950968881831) - 01
a10. .710292625734052D - 02 a,,= -. 278170932906224D - 02
a12- .9811126290903331) - 03 a)3= -,302588640752108D - 03
a14± .789960968802448D - 04 ais- -. 168685181767046D - 04
at6- .283646635409322D - 05 aw7  -. 358314466908290D - 06
ias .3 176794970400061) - 07 a9- -,175440651940430D - 08

a20 .452534347337305D - 10

Average time por angular region refers to tile average computing time on the CDC-6700 to obtain
P(A).
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LISTING APPENDIX B.

LISTING OF DREZNER PROGRAM

This appendix contains a listing of the program for computing P(A) or ?(H) by Drezner's procedure.
It is designed to use J = 3, 5, 8 where J is defined by equation (5) in [31. Thus, referring to Table
I in (3], P will be computed correctly to at least 3, 6., or 9 digits, respectively by this program,.

Call line to Z. Drezner Subroutine

CALL DREZNR (x, y, N, Pk' 1OP) where

x is the input array of abscissas of the vertices of the polygon Vrie utb itdi{ Vnertcokws must de r l Sted in ,0
y is the input array of ordinates of the vertices of the polygon counterclockwise order. See pp. 9, 10.

N is the number of sides of the polygon.*

kP is the location of the answer as computed by the Drezntr method

lOP 1 specifies the Drezner subroutine to use a
table of J = 3 weights in computing Pk (See (55)).

lOP 'm 2 specifies the Drezner routine to use a table
3 of J = 5 weights in computing Pk'

lOP 3 specifies a table of J 8 weights in
computing Pk

*N= I 6or an angular region A with 3 points given in counterclockwis order with first point at
vertex of A, (See page 12). Note 0 < 40 *O 21r for N 1, but 0 4 M0 4 z for N 0 3.
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SUBROUTINE OREZNR( XYNANS, IOP)
DIMENSION X(i),Y(±),U (2) ,V(2) ,G(2), H(2)
DIMENSION AM(5±btAK(5±hRMHO(5i)
REAL L
DATA FT2 / 14142 13562 373/
NMi=N-1

f ANS=oo
NBARIN
IF ( I.EQ.1 I NBAR=3
U(2)=X(NBAR)-X(i)
V(2):V(NBAR)-Y (1)
KPi=K~i
U(i)=X(KPL)-X(K)
V(I)=Y(KPI)-Y (K)
IF C N*GT.1 GO TO 3141
SGN=1..
SN=V(2)*U(l)wU(2)*V(1)
IF ( SN*GE*Oo GO TO 3141
SGN=- 1.
TI=U( 1)

U(2):U( 2

TI=V(2~)
V(2)=V(i)
VI11=71

3141. CONTMNE

8GD2mSQRT( 2**(U(2)*U(2)*V(2)'*V(2)))
3151 GONTIg'WE

Nt2)c=.Y(I)*UC2) +XlW(K)#V

G(2)=G(2)*XKBGOZ *(K

H421=:Y(K)*'BG2)+t)V

AMIK) tQT2*H( 2)
AKIK) ltRT2*H(l)
IF ( P*SO ) GO TO 3181

GO TO 3191
3161 CONTIN~UE
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I' ~ ,± ONT~UERt4OfK)=m(G(l)*(2)441(t)(2) )/6

IF ( KLT*NMI )GO TO 3631.

IF (K*EE.2 ) GO TO 3651

CALL FLAN ( AM(KM),AK(KN),RH0(K)*NKI.)ANIIO
ANS=ANS1AS
IF I? No~o I RETURN (K
IF ):(PIY (K)E~ ETR

3631. CONTINUJE

IO (O 3671 G T35

CALL FLAN CAt4(KM1),AK(KMi),Rt4OCKt~i),At4SIIOP
ANSS= NSIAS

GO TO 3151

361.CNTIU[t)U2
U(2)=CX~i-X29

V~~ ~ ~ ~ (2= -.) K



SUBROUTINE PLAN ( HAKRANS lOP )
OIMENSION EPS3(1)
OATA ( EPS3(X)91:i,3 ) / 2*EmStZE-?7, 2EmlO /
OATA RT2/i.*442 13562 373 /
OM=1,-EFS3 (IOP)
ANS=Oa
IF ( R.LE.-ON ) GO TO 3171
IF ((HeAK*R).GT.O* ) GO TO 3155
IF ( P*GT.0* ) GO TO 2031
IF ( AK*GTGo. ) GO TO 2021
IF C FPGT.O ) GO TO 2011
ANS=BFHI(HvAK#RtIOP )
GO TO 3161

2011 CONTINUC
IF ( DKoNEo0o ) GO TO 2061
GO TO 2023

2021 CONTINUE
IF ( F.LT.O. ) GO TO 2041

2023 CONTINUE
ANS=EC9(HtAK*RtIOP )
GO TO 3161

2031 CONTINUE
IF ( AKAKEO.O ) GO TO 2051

2035 CONTINUE
IF f AKeLT.0. ) GO TO 2061

2041 CONTINUE
ANSEC? (HtAK9RsIOP )
GO TO 3161

2051 CONTINUE
IF ( F*CT O. I GO TO 2061
GO TO 2041

2061 CONTINUE
ANSzFGOIIIAKtR9IOP
GO To 3161

3155 CONTINUE
ANSWEGC11O4AKeRviOP )

3161 CONTINUE
RETURN

3171 CONTINUE
IF (I K#LE*(*H*EPS3(IOP))) GO TO 3161
Tin-A K/RT2
t2wH/RT2
ANS". m5(ERFC(OvT1)-ERFG(09t2)1
GO TO 3161
END
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FUNCTION EQT (HAKRsIOP
DATA FT2/i*4i42 13562 373/
Tz-H/PT2
Ti=-AK(/RT2
EQT=8PtII(-H94-AK9R#IOP )4.5*(ERFC(0qT1+ERFC(OTi))-to
RETURN
ENO

FUNCTION EQ8 (HAKRIOP)
DATA FT2/194L42 13562 373
T=-AK/RT2
EQBr- EPHI (-HAK9-R9 lop ) *5*ERFC(O#T)
RETURN
ENO

FUNCTION EQ9 fHAJ(,RIOP)
DATA PTZ/1*41.42 i3562 373/
Tx-HIRY2
EQgu- EP1'I(H9-AK,"R, lOP ) 4.5'EFFCfOT)
RETURN

END
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FUNCTION EQii(H*AKtRtIOP
DIMENSION EPS3(it)
DATA ( EPS3(I1,1i3 ) / 2sE-592oE-7,P2*E-±0I
DATA F~T2/1*4142 13562 373/

91. FORMAT ( 1MCO3E22.15 )
014=1. EPS3 (ID P)
IF' ( F*LTsON ) GO TO 2001.
T=H
IF' ( AKeLE*H ) T=AK
Ti=-T/RT2
E011.o5*ERFC(0,Tl)
GO TO 1991

1991. CONTINUE
RETURN

2001 CONTINUE
CST=S OR? (H4KH-2**R~H*AK.A K*AK
Ti=R*H-AK

V2uSIC-N(ClqHi
T 1= (TI'T 21 /CST

T3=HOAK
T5. SI GN(T4tT3)
TDELz(1.- T5)0025
T3:P' AR-H

T 2=SI GN (Cl AK)
13= (T34T 2) /CST
IF ( P.GTe0. 60G TO 2031
IF ( TioGTo0. GO TO 2023
1428Pt.I(H90.,T1,*PIp
GO TO 2051

2023 CONTISLE

GO To 2051
2031 CONTIN'UE

IF t TIaLts0s I GO TO 2041
T4aEQ~lH90**TiqlOP
GO TO 20S1

204.1 CONTIMJE
T4mEO7(H,6sTlIOP I

2051 CON4TINUE
IF t AgoGToos I GO TO 3031
IF ( 73oGT60* GO TO 3023
r628PýX(AK90atT391OP
GO TO 3351

3023 CONTINUE
T6*EQS(AKPQ.,13,IOP I
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GO TO 3061
3031 CONTINUE

IF ( T3*LTe0. GO TO 3041
T6=EO8(AKv0e9T3vIOP
GO TO 3051.

304e1 CONTINUE
T6zEQ7(AKf,0*9T3sIOP)

3051 CONTINUE
EQIlz74+Tb-TOEL
RETURN
ENO

FUNCTION 63PtII HAK9R olop)
DIMENSION A(2iJ9X(2l),LLO(6J 4LHI (6)
DIMENSION EPSI(II-)
GIMENSION EPS3(11)
DATA ( AMI ,I1,18 I i

1 4e4602 97704 6665SE-1, 3.9E46 82669 98335E-ig
2 4.3728 46798 ?7644E-29 2t4840 61520 20443E-it
3 3o9233 L:666 52399E1, 211813765E,
4 3.3246 66035 L3439E-29 o*2485 33445 1562$E-4 I

*1 DATA ( X(l~I),198 I
1 1.9055 4149? 98192E-19 b*48?5 1*675 445M7-io
2 1.7997 76578 41573E+0,p 1.0024 21519 68216E-19
34,8281 39660 46201E-19 190609 49621. 52572E*Dv41.7797 29418 52O26E*0, 2*6697 60356 38?66E+D
DATA t A(I)*I=9s16 ) f

1 1.3410 91884 53360E-it 2.68331 07544 72640E-19
2 2.7595 33979 $88'22E-is 1.5744 82826 18?9CE-19
3 4.4814 11.991 ?462SE-29 5.3679 35756 (2526E-30
4 2-0206 36491 32437E-4o 1.1925 96926 59632C-6 t

t ~DATA 4 X(&hIol9t&6 )
1 5.2978 64393 18514E-,263 32 16E1
2 6.1630 28041 824.02 E-19 lou642 46312 11623800t
3 lISbO6 55862 27006E.0, 2si$3'* 21153 39566E*Oo
4 2.8631 34883 ?08088009 3.6660 01162 ?244.OEto f
DATA ( EP~1tI?o.it3 1 .4 *6.o-12*1-20s
DATA Pt / 3.1415 92(53 58979/
DATA t LLOCI).Iti,3 1 /4 1.4.6
DATA i L14tfI(I3.I1,j I / 3*6,16 1
DATA RT2 / 1.4142 13562 373 1
DATA ( EPS3IZIIal.3 SI 2*E-592*E-?v2.E-10/
O#1:1.-EPSJ (OP)
ILO&LLOIIOP)

EPS=EPS141OP)

IF I RSG*Lt.1. I GC T0 29~91

GO TO 3001
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2991 CONTINUE
T3xSQRT (i.-RSQ)
CST=RT24T3

3081 CONTINUE
BPHI=O.
IF £ R*LE*-Odt I GO TO 3011
IF ( ReLT*O1 ) GO TO 3331
T=H
IF ( AK.LE.H ) TzAK

TI=-T/RT2
8PHIzs5#ER.F%'#0qTI)
GO TO 3371

3011 CUNTINUE
IF 4 AK*LE*(-t$*EPS3(IOP) 1 ) G TO 3371
1 1-AKiRT2
T2=H/Rr2
ANS.5S*(ERF, (0,T I)I-ERFC 40,T21)
GO TO 337%

3331. CONTINUE
HNc~iCST
AKI=AKICST

SUNIXG.J 00 335L 4=ILOoZ"t
TI=Hi*12-4M.( ) -Nil *OKI* 42,10 (J-AKI)

I #Z.1R*(XAI)t41)U(XJ)-AKI)
IF ( TLd..T*EPS )60 TO 3351
SUH11aSUK1#EXPf11J*A(J)

3351 CONTINUE
SUf#=SUI1#A4I) SUH1

3361: CONTINUE
OP14Z 4SW4'fTS 3#Pt

3311, CONTINUE

ENO
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APPENDIX C.

LISTING OF TEST PROGRAM WITH SOME
NUMERICAL RESULTS

The test program listcd in this appendix is designed to "see" ,,11 paths of the VALR16 sub-
routine, the basic routin~e of this report. The test p,,ogram treats three different sets of triangles for
each e. i.C., Ej, E2, e3. A total o" 351 triangles are treated. Our subroutine VALR16 is used
to obtain the probability P(H) over each triangle and the result is compared with the result obtained
by the rouine based on Dreznc,'s method. The numerical results below state the case number,
(x, y) vertices, VALR i 0' result, Drezner result, and absolute value of the difference, corresponding
to that case for which the absolute value of the difference in P(H) for the two methods was a maxi-
mum for each set and for each e. Thus there are nine cases given below.

S~Case !
aNo. x y P(H) and IAPI

-_eI = 2.54(-4)*

3 2.0000 00010 0000 1.0009 00000 0000 .0 1116 23895 4828
1.0000 00000 0000 0.0000 00000 0000 .01144 55124 4546

3.0000 00000 0000 1.0000 00000 0000 2.83(-4)

116 3,0000 00000 0000 1.5000 00000 0000 .07276 76379 5214
0.0000 00000 0000 -0.0006 06881 '7000 .07312 88147 1695
3.000., 00000 0000 0.0000 00000 0000 3.61(-4)

76 .11048 34376 7180 .11048 34376 7180 .07464 96837 3470
-1.8895 16562 3282 .11048 34376 7180 .07443 77215 8773
-1.8895 16562 3282 --,88951 65623 2820 2.12(-4)

e 2 2,57(-7)*

15 0.0000 00000 0000 -2.0000 00000 0000 .17865 07387 5631
1.0000 00000 0000 0.0000 00000 0000 .17864 99501 5890
0.0000 00000 0000 1,0000 00000 0000 7.89(-7)

90 3.0000 00000 000O 3.0000 00000 0000 .00059 6,636 6379
3.0000 00000 0000 0,0000 00000 0000 .00059 75925 2985
6.0000 00000 0000 1.5000 00000 0000 P.29(-7)

79 .01109 91882 5761 ,01109 91882 5761 .i 1i00 59368 5515
-, 1.9889 00811 7424 .01199 91382 5761 .11200 54478 9902

.01109 91882 5761 -..98890 08117 4239 4.89t--7)

*3ee Appendix A.
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Case x P(H) and I API

L 2.94(-lO)*

96 4,0000 00000 0000 0.0000 00000 0000 .12383 33015 1674
2.0000 00000 0000 2.0000 00000 0000 .12383 33012 5254
0.0000 00000 0000 7.8256 90500 (-10) 2.64(-10)

65 1.9999 80000 0000 4.5000 00000 0000 .47645 25380 3718
-3.0000 00000 0000 0.0000 00000 0000 .47645 25375 521 1

3.0000 00000 0000 0.0000 00000 0000 4.85(-1 0)

94 .00116 10499 1180 .00116 10499 1180 .22803 35273 2106
-1.9988 38950 0882 -1.9988 38949 3056 .22803 35268 0156

2.0011 61049 9118 -1.9988 38950 0882 5.19(-1)

*Scc Appendix A.
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PROGRAM ORET COUTPUT
COMMON XOP
DIMENSICN X (201) 9Y (201) 1 XI(20i) ,Y± (201)
0IMENSI(N EPSi('.)qX3(3)vY3(3)
OIIIFNSI(N APH2i(3),APH3i(3)
DIMENSION IRAY(21)
O0k4ENSICN DELI(.5)j3 1(3),9ALPHA(3)

c SFT A FOR PJ ;1 M$ULL OE'IOK

DATA ( Y(I),lmi,48 ) /

2 i.,i.,-i., Is#.62a6f-is p isf2o ,1.3333 itit n 9,Do

DATA ( Y(I),91,±02 3

DATA ( YCI)qI:f99,0?
I io*9* oi)* i oi t, 2.19p. 5 51.2 t ef5-

DATA ( Y(I)PIZ49903,I

±DATA ( DFLI()p I=9i,3

DATA ( 91(Vf,1=91piO V2.4,.55432

DATA YC AHI()# 1103 3 117

±DAT Y 1)48 36E- ZzV3 1

1 0 1 1os$ .6-059Coles37

L _____t____pDot____

DAT EP 1 .1) -t Ic It -

1 #3264C o ,4421 4 -7*9.34 WLZ-10



90 FORMAT (iHO960KIi0)
91. FORMAT ( H-98ý16*9
92 FORMAT ( 1.- )
93 FORMAT ( 18011.0
9? FOiMAT ( £1.
95 FORMA T CH £844X,2E12.4)

PRINT 9?
00 3021 1:1,151

Xl( I)=X Il)
Yi(I) :Y(I)

3021. CONTINUF
Do 307£ 13MI,3
PPINT 97
PRINT 90113
IFNTzO
00 3061 I5:1,3
PRINT 9?
TMAXO.*

00 3025 1=1#151
X (I)a i ( 1)
Y(I)=Yi(I)

3025 CONTTNUF
APH3=APH31( 3)

Y(95) =Z. AF'43
Y (98)'-3.*APHS

y (to 41 9401"a
Y (105) -9*A PH3
y(1U07) my(104)

Y (Iii)Y zd(OS)

YIC1)CY(I)

38
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3027 CONTINUE
IF ( 15*EQ.1 G3 TO 3035
IF ( 15,,E0*3 )GO TO 3035
00 30,31 !:i,15t
X(I)=3*Xi(I)

3031. CONTINUE
3035 CONTINUE

CO 3051 1:1,115,3
303? CCNTINUE

IP2=I+2
Nf 00 3049 T1=10,

301 IF ( IPNTe.N-e.O I PRINT 93,M
301CONTINUE

IF ( i.EG.1 GO TO 3047
TlIX(I)
T2=Y(I)

Y(I,)=Y(1P2)

Y(IP2)=T2
304?7 CONTINUf

IF ( 15.NE93 ) GO TO 304.5
IF ( Il,,GToi ) GU TO 3045
TixAPHZiI( 3)
T 22SQPT (T1) 1is Z1-2

S)(:X(IDT2
SY:Y(I)-T?
00 3043 I?:I9132

V (1?) y (17)- SY
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301.3 CONTINUE
3045 COMTINUE
3048 CONTINUE

Ti=(X (I) -X (I+) j) *(Y (D Y( 142))

IF ( Ti*GE*TZ GO TO 304
T I=X( I+ cl)
x(I+2)z= (1+1)
X(I+i)=Ti
T2=Y(I+2)
Y(I+2)=NI (14)
Y(I+i)=T2

304 CONTINUE
IF ( IFNT*t4E.0

t 'PRINT 95,9(X(J)gf (J) PJ=It1P2)

CALL VALR16( X(I),Y(I),NA'4SiIOPi)
ANS:ANSI
IOP=I3
CALL ORE ZNR ( X( 11 , Y(I) s 3 vANS3, 13)
DEL=ABS( ANS-ANS3)
IF ( OEL*LE.TM4X )GO TO 304q
MSAVcM
S AVOEL 2 EL
TMAX= DEL

X~3(i)=X(I,)

X3 (3) =X ( 1 +2)

Y3(2):Y(Ii)

SAVOR:AýS3
SAVPJ=A tS

3049 CONTINtJ!

3051 CONTINUE
PP INT 93 MSAV
PRINT 9 6,X 3(1D V 3 (1)
P'RINT 96,tX 3 1) Y 3( 2)
PRINT 96VXS(S),YS(S)
PRINT 94.,SAVPJSAVORqSAVOEL

3061 CONTINUE
3071 CONTINUEI4011 CONTTNUF

94 FORMAT ( 1H0#,4Sf.2z15)
96 FORMAT ( iO0,6E22.19;

9011 CCNTINUf
STOP
PND
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APPENDIX D.

FORTRAN LISTING OF THE PROGRAM

This appendix contains the basic subroutine of this report which calculates P(A) or P(H) to 3,

6, or 9 correct decimal digits.

CALL VALR 16 (x, y, N, ans, 10P)

-where:

x, y are input arrays of the coordinates of the vertices, etc-ms be listed in

N is the number of sides of the polygon.* ~~yodrSep.9 0

ans identifies the location where the Pk is returned.

lop 1, 2 or 3 for 3, 6 or 9 decimal digits of accuracy, respectively.

*N I for an angular region A specified by three points given in counterclockwise order with the
first point at the vertex of A,(Sceepage 12). Note 0 <~ AO 2w for N 1,but 0 < AO <~ w
for N > 3.
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SUBROUTINE VALRI.6( XYtNA4S*IOI'
DIMENSION RSQ('.1

DI14ENSION E(5J ,E2(±0)9,EJ(15)
DIMENSION APH14J),APH2(3),APHS(3)
REAL L
DATA P113oi415 92653 58979/
DATA TWOPI/6*2831 85301 17958 f
DATA ALNPI/191447 29885 84940 0-
OAT A C19.28299 479L7 73877 /
DATA C2/*1591.5 49430 91695 /
DATA ( E(L),Ialg 5) 1

9 8857775LB572895EI8u 9 -.*98115195Z??605BE+I0
2 07593055O20624$SE+00 v -. 353644498O686917E+80
3 *69523209243520?E-01 i

DArIA (E2(I),Izi, 10) /
I *6862264ML8663Z4IO , -*99995o714561@j6E+GO
2 *685348620003892E+0O -*663611i2J904.3357E+lO
3 *42i82119ri66199E.OO t -0222698855667206L.O0
4 *905057384L50449E-J0t -*254906i1118lZ87E-01
5 *4SOb95L689d4i38E-QZ0 , -. 32337723%9.5247E.03

DATA (ES~ltL),11 L5) 0'
I *88622692493t465E+0a , .. 99999e899776252Eo00
2 e8862231'33i86722E+JO 9 u'.0666626670510917E*Ql
3 o442851899323569E*00 * -. 265638206366I25E+60
4. *L45G6Q0434Q3U1.E.+s0 -w-o?14909,GJ??99669E-Q1 s
5 93491992955212LUE-OL , '.13.32353214644tE.-01
6 *32494a.5431?L185Em02 , we04260243S09096E-23
? t1O5T875744.80bJ33-03 , .m91186486gb0461c4GL05

DATA CAPNI(I)9lzls3)
L 2*O2Em?v2*08Eui3*2*2.7E-1i9
DATA I APH2(11)sI8193)

I i*22lE-2tl*23E-4*1*35E-b/
DATA ( APH3(1)ipXuIS)

I 2*25E.4sZ282E-7,2s6Lý.-l0*1 DATA 4 RSQ (I),I91=10 1 .
I 690516s1Z.60b05 ,19*201924

Kul

PHIK9O.
ANS=09
U4L)=Xt 2 )-X (K)
V41101t 2 )-V(K)
IF ( t4.NEe± 1 G0O r.3131
U(2)s)I(.)-X(1)
Vt21=Y(3)-Ytil
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IFT I3141So 60T 34

U (2)=(NJY(I
Ti=V12 )

60 TO a.rAP141 ~ 6.TO$
CA131 GONTNU

316± GOUNTINE
80r-aASRT( 2**U4±-uJ*UMVCL *V1
8I2-SQT( ZUst)'V2)0VU(Z~d#VZJ

3017 CONTINtE

Bx*C5*(XtJ11)X(K)*Y4±b*YtK))
IF I~AUa B*T*PX(K)*V( IV GOKOI

31 0 CONTKbEIG()B

PH I a AT A 2(T 19 TZ)

GO ~TO */3621

317 CONTIN .UE OT~£

NG (2)iGt U2) *X W+V (2 OV

HF 4 2) a -VG)3UI 1 IC 3i*t218

P -HIZK/P0
IF £ 641141.0. I GO rTU JL85
AN=G1.j4PGR2FCC11i(2) .

GO 10 3621
314L CONTINUE

60 TO 3621.
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3183 CONTINUE
PHIK=0 9
ANS1=0
GO TO 3621

Si65 I~F (B*.L.E9APH2(IOP ) GO TO 3361
IF CGtAJ.LT0o. I GO TO 3261.
if ti (2)*GE* Us I GO TO 3471

H 42)~=- n2)
ALAM=P l
IF ( AES (H(2l.LE*APHiJCIUPi J GO TO 3251
L=*54 ERFC(fl9-H(2))
GO TO 3i4 71

3251 CONTIN UE

G(Cl TL~ 3471
.5261 CONTIN~UE

IF ( G12)*LTCo. 30~ TU £271
ALAM=PI
IF ( AaS(H(1)hI..E.APIHs41OP) 1 40 TO 5251

(p 0 TO J'.7 L
327L C#JNTINUE

IF ( ASS(H(M*)L~vAPt1J(I0Pb) GO TO 3291
IF ( A6SU1l2)lsLE9API43(!OPJ I GU TO 328L

6~U TO 3471
3281 CONTINUE

SO TO 3471
32'31 CONTINUE

IF ( ABSlH(Z)).LC.APHS(IC.P) J GO fTO 3411

GRO TO 3471
3331 GUNTINUE

GOTO S161
34.71 CONTlN LE

IF i t3.LT.&RiQtIObP) I GO TO 3479
PH INZ- 8.
GO TO 3495

.5419 C ON TIN LEF
IF I (.NEosi 60G TO .3480
IF t F4iN aLivie GJ 10 £4811
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A J-8=PH IN-ALAN
GO TO 3481L

34#80 CONTINUE
St4=GM*Ht4 -G(2J*HM
CN=GtiU*G t)+H (1) *H(2)
AjOzrATAN2 (SI4,CN)
PHI v-AJO
If( AjOot.T.Qo I PHIK:PI*AJO

.3481 CON1ThIE
CAPG=A A
CAPt~. M~AJ
p4=1
FaG.H 2 Nl

IF ( IOP*EQ*3 )G O34
IF ( IOPsEQ*2 ) 60 TO 3741
SU=E (H) 4AJL

34.82 CONTINUE

N ( I h (1)*G (I I
rtm4(a)4i(t)
F=F+B
CAPV= (F#CAPG+T) iN
SUK.SSW4,& CH)#CAPV
IF( K oGC* 5 1 GO TO 5491
CAPG=C RC1
C IRCHa CAP V
GO TO 3482

349Lj CONTINUE
ANiSI=L*E)(P(tB+ALWI4P)) #(CAPH4wSUN)
130 TO 3621

.3496 CO~hNTM

3621 CON TIN k
IF ( WKNNI) ) SbSls36filS62.3

3623 GONTIN tE
ANS=At$StAKS*AeStANSL)
kETURN

36J1 CONTINUE

KPL:K*l

IF ( K*d4E*Z I GO T 3b~1

L U(21=X(KPLI-XIK)
V 42 Ja VI KP I)-V(KM
PHI41Ph1N-PHIK
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BG2zZSQRT( 2s*(U(Z)*U(21)W(2)*V(2))
GO TO 3151

3651 C ONT IN LE
U411=U (2)
V M=)V (2)
U tZIX4KP LI-X(K)
9 (Z)zY(KPImT (K)
BbG~l8G02
BG02USQRT( Z**tU(2l*U(Z)+V4Z)'*V(ZI))
GO TO 367L

36EI CONTINUE
K=N
U(1ax(I4) -Xt)1
V At 3Y IN) -Y (1I

3671 CONTINUE

ANS=ANS-A851 ANSLI
6O TO 3L51

3681. C ONTIN UE
SUN=E3 SO*AJl

361L CONTINUE

MaN.21

raI.I(2)-fit 1)
Fa F *.
CAP V:(F#CAPG*T) /N
SUH=SUff#E5(Hl 'CAPV
IF I M*GE*I5 1 60 10 3491
C APGaC1RCH
CIRGHa CAP V
60 TO 3691

373). SIUflE2 CHI #AJL

h42iHil 46421

* . CAP VatF*CAPG*T)/N
SUWe SUM*E2(I4) *CAPV
If A N*GE.i16 60 fO0 S4.9t
CAPGOCIRCN
CIRCNuCAPV
GO to .3711
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